Name

Period \qquad

This part of the review should be done with NO CALCULATOR

1. Solve: $2 x^{2}-3 x+2=3 x-6$
$2 x^{2}-6 x+8=0$
$x^{2}-3 x+4=0$
$k=\frac{3 \pm \sqrt{9-16}}{2}$
$=\frac{3}{2} \pm \frac{i \sqrt{7}}{2}$
2. Solve: $(x-2 i)^{2}=-9$

$$
\begin{aligned}
& x^{2}-4 i x+4 i^{2}=-9 \\
& x^{2}-4 i x-4+9=0
\end{aligned}
$$

$$
x^{2}-4 i x-4+9=0
$$

$$
\hat{x}^{2}-4 i x+.5=0
$$

$$
x=\frac{4 i \pm \sqrt{(-4 i)^{2}-4(1)(5)}}{2}
$$

$$
=\frac{4 i \pm \sqrt{-16-20}}{2}
$$

$$
=\frac{4 i \pm \sqrt{-36}}{2}=\frac{4 i \pm 6 i}{2}=\{5 i,-i\}
$$

3. Find the polynomial function of least degree with real coefficients in standard form with zeros $-2,3-i$, and $f(2)=8$.
```
\(f(x)=a(x+2)(x-(3-i))(x-(3+i))\)
    \(=a(x+2)\left(x^{2}-(3+i) x-(3-i) x+(3+i)(3-i)\right)\)
    \(=a(x+2)\left(x^{2}-3 x-i x-3 x+i x+10\right)\)
    \(=a(x+2)\left(x^{2}-6 x+10\right)\)
    \(8=a(2+2)\left(2^{2}-6(2)+10\right)\)
    \(=a(4)(2)\)
```

$8=8 a$
$a=1$
$\begin{aligned} f(x)=(x+2)\left(x^{2}-6 x+10\right) & =x^{3}-6 x^{2}+10 x+2 x^{2}-12 x+20 \\ & =x^{3}-4 x^{2}-2 x+20\end{aligned}$
4. For: $f(x)=x^{4}+x^{3}-6 x^{2}-14 x-12$
a) Find the zeros of $f(x)$

	1	1	-6	-14	-12	$x^{2}+2 x+2=0$
-1	1	2	-4	-18	-30	
2	1	-6	-8	-40	$x=\frac{-2 \pm \sqrt{4-4(2)(1)}}{2}$	
-2	1	0	-14	-40	$=\frac{-2 \pm \sqrt{-4}}{2}$	
3	1	2	2	-6	0	
$(x+2)$	$(x-3)\left(x^{2}+2 x+2\right)$		$\{-2,3,-1+i,-1-i\}$			

b) Write the linear factorization of $f(x)$

$$
(x+2)(x-3)(x-(-1+i))(x-(-1-i))
$$

5. Find the zeros of $f(x)=x^{4}-2 x^{3}+8 x^{2}-6 x+15$ given that $1-2 i$ is a zero of $f(x)$.

$$
\begin{aligned}
& \begin{aligned}
(x-(1-2 i)(x-(1+2 i)) & =x^{2}-(1+2 i) x-(1-2 i) x+(1+2 i)(1-2 i) \\
& =x^{2}-2 x+5
\end{aligned} \\
& \begin{array}{r}
x^{2}-2 x+5 \frac{x^{2}+3}{x^{4}-2 x^{3}+8 x^{2}-6 x+15} \\
-\frac{\left(x^{4}-2 x^{3}+5 x^{2}\right)}{3 x^{2}-6 x+15} \\
\frac{3 x^{2}-6 x+15}{0}
\end{array} \\
& \begin{array}{l}
x^{2}+3=0 \\
x^{2}=-3
\end{array} \\
& \begin{array}{l}
x^{2}=-3 \\
x= \pm \sqrt{-3}= \pm i \sqrt{3}
\end{array} \\
& \frac{\text { (or use Q.F.) }}{\{1-2 i, 1+2 i, i \sqrt{3},-i \sqrt{3}\}}
\end{aligned}
$$

6. For each of the following, state the equation of the vertical, horizontal, and end behavior asymptotes.
a) $f(x)=\frac{2 x+1}{3 x-1}$
b) $f(x)=\frac{x}{x^{2}+1}$

c) $f(x)=\frac{x^{2}-3 x-4}{x^{2}+3 x+2}$
d) $f(x)=\frac{6 x^{2}-5 x+3}{2 x+1}$

$$
\begin{aligned}
& \frac{(x-4)(x+1)}{(x+2)(x+1)} \\
& V: x=-2 \\
& H: y=1 \\
& \text { SBA: } y=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(3 x-3)(2 x-1)}{(2 x+1)} \\
& V: x=-\frac{1}{2} \\
& H: \text { NONE } \\
& \text { EA: } y=3 x-4
\end{aligned}
$$

7. Given: $f(x)=\frac{x^{3}-4 x^{2}+3 x}{x^{2}-4}$, Find each of the following, then graph

Vertical asymptote

$$
x=-2 \quad x=2
$$

Horizontal asymptote
End behavior asymptote

y-intercepts

 O

$$
[-10,10] \times[-20,20]
$$

End behavior limit statements

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=+\infty \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{aligned}
$$

$$
\lim _{x \rightarrow 2^{+}} f(x)=-\infty
$$

$$
\lim _{x \rightarrow-2^{+}} f(x)=+\infty
$$

8. Describe how the graph of each of the following is obtained by transforming the graph of $f(x)=\frac{1}{x}$. Identify the asymptotes.
a) $f(x)=\frac{3}{2-x}$

b) $f(x)=\frac{3 x+4}{x+3}$

9. a) Sketch the graph of $P(x)=-(x+2)^{2}(x-1)(x-3)$
b) From the graph, what is the solution of $P(x) \leq 0$

$$
(-\infty, 1] \cup[3, \infty)
$$

10. Solve each of the following:
a) $\frac{2}{x-3}-\frac{x+4}{x}=1$
b) $\frac{3 x+1}{|x-1|} \geq 0$ $\left\{\begin{array}{c}\{+\sqrt{7} \\ 1-\sqrt{7}\end{array}\right\}$
c) $\frac{\sqrt{x+4}}{x^{2}-6 x-7} \leq 0$

11. How many different quartic equations with lead coefficient of 1 can be written with only the roots of -1 and 3 ?

$$
\begin{aligned}
& (x+1)^{3}(x-3) \\
& (x+1)^{2}(x-3)^{2} \\
& (x+1)(x-3)^{3}
\end{aligned}
$$

This part of the review should be done with a CALCULATOR
For each of the following problems, state the window used to see the entire graph and make a sketch of the graph.
12. A farmer has 130 meters of fencing with which he plans to make a rectangular pigpen. The pen is to have two internal fences running parallel to the end fences that divide the pen into three sections.
a) Express the area " A " as a function of " x ", the length of the end fence.
b) State the domain
c) Find the dimensions of the pen that maximizes the area.
a)

13. You are adding $x \mathrm{~mL}$ of pure acid to 200 mL of a 45% acid solution to increase the concentration of acid.
a) Express the concentration $C(x)$ of the new mixture as a function of x.
b) How much pure acid must be added to obtain a solution of 68% acid?
c) How much pure acid must be added to obtain a solution of at least 72% acid?

a. Yea! I'm done and I understand this stuff - bring on the test!!

b. Oh no! I'm confused. What am I going to do? I'd better get to work. Pre-Cal party with my friends Saturday night and see my teacher for some help!!

