Exponentials \& Logarithms Concept Review
I. Basic Log/Exponent Rules ($\mathrm{x}, \mathrm{y}, \mathrm{b}$ all positive, $\mathrm{b} \neq 1$)
(1) $\quad \log _{b}(x y)=\log _{b} x+\log _{b} y$
(Log of a Product Rule)
(2) $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
(Log of a Quotient Rule)
(3) $\quad \log _{b}\left(x^{k}\right)=k \log _{b} x$ (any k)
(Log of a Power Rule)
(4) $\log _{b} x=\frac{\log _{c} x}{\log _{c} b}$ (for any $\left.c>0, c \neq 1\right)$
(Change of Base Rule)

A logarithm and an exponent with the same base are inverse functions. This means that:
(5)
$y=\log _{b} x \Leftrightarrow b^{y}=x \quad$ and
$\log _{b}\left(b^{x}\right)=b^{\log _{b} x}=x \quad$ and,
(Log/Exponent Inverse Rule)
as a specific example, $\ln \left(e^{x}\right)=e^{\ln x}=x$
In fact, all of the above rules are true for the specific case when the base is e, so the above rules could all be written with "ln" in place of " $\log _{b}$ ".

EXERCISES: Solve each of the following equations for a in terms of b.
1)

$$
\begin{aligned}
& e^{3 a+5}=b \\
& 3 a+5=\ln b \\
& a=\frac{\ln b-5}{3} \\
& \ln 3 a-\ln 5 b=12
\end{aligned}
$$

2)
3)

$$
\begin{array}{ll}
\ln \frac{3 a}{5 b}=12 & 3 a=5 b e^{12} \\
\frac{3 a}{5 b}=e^{12} & a=\frac{5 b e^{12}}{3} \\
\ln (4 a-3)=b \\
4 a-3=e^{b} \\
4 a=3+e^{b} & a=\frac{3+e^{b}}{4}
\end{array}
$$

4) $\ln \left(3 a^{4}\right)=b+\ln a^{3}$

$$
\begin{aligned}
& \ln \left(3 a^{4}\right)=b+\ln a^{3} \\
& \ln \left(3 a^{4}\right)-\ln a^{3}=b \quad \ln 3 a=b
\end{aligned}
$$

$$
\ln \left(\frac{3 a^{4}}{a^{3}}\right)=b \quad 3 a=e^{b}
$$

5) $\quad a^{17}=b$

$a=\sqrt[17]{b}$ or $b^{1 / 17}$
6) $\begin{aligned} & \begin{array}{l}b e^{a}=7 \\ e^{a}=\frac{7}{b}\end{array} \quad a=\sqrt{\ln \frac{7}{b}} \text { or } \ln 7 \\ & \log _{b}\left(a^{5}\right)=60 \quad 5 \log _{b} a=60\end{aligned}$
7) $\begin{array}{r}\log _{b}\left(a^{5}\right)=60 \quad 5 \log _{b} a=60 \\ \log _{b} a=12 \quad a=b^{12}\end{array}$
8) $\quad a^{3}=8 b^{10}$

$$
a^{3}=2^{3} b^{10}
$$

$$
a=2 b^{10 / 3}
$$

9) $\quad \log _{a} 12=b \quad a^{b}=12$

$$
a=\sqrt[b]{12} \text { or } 12^{\frac{1}{b}}
$$

10)

$$
\begin{aligned}
& \text { 0) } \begin{array}{l}
b^{a}=36 \\
\log ^{a}\left(b^{a}\right)=\log ^{3} 36 \\
a \log b=\log 36 \\
a=\frac{\log 36}{\log b} \log _{b} 36
\end{array}
\end{aligned}
$$

