	Problem	Repetition?	Order matters?	Fill in the Blanks	Factorial/ ${ }_{n} P_{r} /{ }_{n} C_{r}$	Quirks?
	How many ways to line up 6 people?		Yes	$\begin{aligned} & 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\ & =720 \end{aligned}$	$\begin{aligned} & { }_{6} P_{6}=\frac{6!}{0!}=6! \\ & =720 \end{aligned}$	-
	How many ways can you seat 4 people around a round table?	Mo	Yes	$\frac{4 \cdot 3 \cdot 2 \cdot 1}{4 \text { rotations of each }}$	$(4-1)!=3!$	Circle no clasp can't flip
	How many ways can 5 people be lined up if Biff\&Sally just HAVE to be next to each other?	Mo	les	$\begin{aligned} & (4-3,2,1) \cdot 2 \\ & B \div 5^{*} \text { linked", flip } B, S \end{aligned}$	$\begin{aligned} & 4 P_{4} \cdot 2 \\ & =4!\cdot 2=48 \end{aligned}$	treat linked people as 1 person
	How many different 5-card poker hands are possible?	1 Vo		$\frac{52.51 \cdot 50 \cdot 49.48}{5!}$	$5_{2} C_{5}=\frac{52 .!}{47.15!}$	$\begin{aligned} & \text { Combinax }_{10} \\ & \text { essist: } \end{aligned}$
NOTE ANY \rightarrow NUMBER OF BUYS/GIRLS	How many ways can you have a flush in poker? (5 cards of the same suit).	$1 / 0$	1 No	$\frac{52 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5!}$	$\begin{aligned} & { }_{4} C_{1} \cdot{ }_{13} C_{5} \\ & (\text { sust }) \\ & \text { (ranks) } \end{aligned}$	
	How many ways can the judges choose $1^{\text {st }}$ to $5^{\text {th }}$ places from 10 tap dance contestants?	Mo	Yes	$10 \cdot 9 \cdot 8 \cdot 7 \cdot 6$	${ }_{10} P_{5}=\frac{10!}{5!}$	-
	How many boy/girl sequences are possible w/6 kids? (BBGGBB is 1 sequence, GBBBBG is another).	yes	yes	$\begin{gathered} 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\ =2^{6}=64 \end{gathered}$		-
	How many ways can the 4 call letters of a radio station be arranged if you must start with a K or W and no letters repeat?		yes	$2 \cdot 25 \cdot 24.23$	$2 \cdot{ }_{25} P_{3}$	$\begin{aligned} & \text { Start } \\ & \text { Korl } \end{aligned}$
	Lunch at Chez Samhita consists of entrée, 2 vegetables, and a dessert. If there are 4 entrees, 6 vegetables, and 7 desserts available, then how many lunches are possible?	N_{0}	N / A	$\frac{4 \cdot{ }_{6} C_{2}{ }^{K} 7}{4 \cdot\left[{ }_{6} C_{2}+6\right]}$	$\begin{aligned} & n_{0} \text { repeat } \\ & \text { on Veggies } \\ & \text { <repeat } 4 \end{aligned}$	eggies
	The Secret Math Society is electing new members by approval voting. Current members get a ballot w/the names of 5 candidates and check off the ones whom they would approve. In how many ways can members fill out the ballots?	No_{0}	V_{0}	$\begin{aligned} & 2 \leq 252 \\ & =2^{5} \end{aligned}$	$\begin{aligned} & { }_{5} C_{5}+{ }_{5} C_{4} \\ & +{ }_{5} C_{3}+{ }_{5} C_{2} \\ & +{ }_{5} C_{1}+{ }_{5} C_{0} \end{aligned}$	$\begin{aligned} & N-\delta e t \\ & \Rightarrow 2^{n} \\ & \text { subsets } \end{aligned}$

II. Make up a counting problem that has the following number as its answer:
a)
${ }_{52} C_{3}$
b) $\quad{ }_{12} C_{3}$
c)
${ }_{25} P_{11}$
d) $\quad 2^{5}$
possible answers for part II:
a) How many ways can you deal a 3-card hand from a standard poker deck?
b) How many ways can a committee of 3 people be picked from the 12 school board members?
c) I am going to choose 11 of my DVDs to arrange on the shelf. How many ways can I do this?
d) How many different patterns of heads and tails are possible if a coin is tossed 5 times?
e) Big Louie's Pizza Parlor offers 3 types of crust and 10 toppings. How many different pizzas are possible?

