$\qquad$

## 3.1-Exponential and Logistic Functions

1. Determine whether each statement is always $(A)$, sometimes $(S)$, or never $(N)$ true for exponential function $f(x)=a \cdot b^{x}$.
a) $\quad \lim _{x \rightarrow-\infty} f(x)=0$.
b) $\quad f(x)$ is an odd function. $\qquad$
c) The graph of $f(x)$ passes through the point $(0, b)$.
d) $\quad f(x)$ is bounded above if $\mathrm{a}<0$.
e) The graph of $f(x)$ has a vertical asymptote.
2. Determine whether each statement is always $(A)$, sometimes $(S)$ or never $(N)$ true for logistic function $g(x)=\frac{c}{1+a \cdot b^{x}}$.
a) $\quad \lim _{x \rightarrow-\infty} g(x)=0$
b) The initial value of $g(x)$ is greater than 1.
c) The graph of $g(x)$ is strictly increasing.
d) The domain of $g(x)$ is all positive real numbers.
$\qquad$
e) $\quad g(x)$ has a vertical asymptote.
3. Sketch a graph of each function:
a) $f(x)=4(2)^{x}$

b) $\quad f(x)=\frac{9}{1+2\left(\frac{1}{2}\right)^{x}}$


## 3.2 - Exponential and Logistic Modeling

4. Write an exponential function that satisfies the following conditions (make sure to define your variables!): Initial population $=23,000$, population doubles every 9 years.
5. Write a logistic function to model a population with an initial value of 3 , a limit to growth of 51 , and which passes through the point $(3,17)$.
6. (calculator allowed) The population of a bee colony is currently 520, and is increasing at a rate of $2.3 \%$ per year.
a) Write an equation to model the bee population $B$ after $t$ years.
b) How many years will it take until the bee population reaches 2000 bees? Round your answer to the nearest hundredth of a year.

## 3.3 - Logarithmic Functions and their Graphs

7. Sketch a graph of the function $g(x)=\log _{2}(-x)$ :

8. What transformations are required to transform the function $f(x)=\log x$ into the function $g(x)=\log _{15}(x+7)$ ?
9. Simplify:
a) $\quad \log _{3}\left(\frac{1}{81}\right)$
b) $\ln \left(\sqrt[3]{\frac{1}{e^{7}}}\right)$

## 3.4 - Properties of Logarithmic Functions

10. (calculator allowed) Evaluate $\log _{5} 19$. Round your answer to the nearest thousandth.
11. (calculator allowed) Solve $e^{x+4}=253$ for $x$. Round your answer to the nearest thousandth.
12. (calculator allowed) Solve $\log _{6}(x+7)=3.54$ for $x$. Round your answer to the nearest thousandth.
13. Evaluate $4 \log _{6} 3+\log _{6} 16$
