## Precalculus Honors

## Review for Test §§ 4.1, 4.2, 4.8, 5.5, 5.6

1. In $\triangle A B C$, if $a=24$ and $B=42^{\circ}$, determine the values of $b$ that will produce the indicated number of triangles:
(a) Zero $b<16.06$
$\begin{aligned} h & =24 \sin 42^{\circ} \\ & =16.06\end{aligned}$
(b) One
$b=16.06$ or $b \geqslant 24$
(c) Two

$$
16.06<b<24
$$


2. Siegfried and Roy are driving towards each other along a straight highway. When they are exactly two miles apart, they simultaneously spot a UFO in the sky between them. If Siegfried's angle of elevation to the object is $36^{\circ}$ and Roy's angle of elevation to the object is $48^{\circ}$, then

$$
180-(36+48)=96^{\circ}
$$

(a) How high is the UFO?

$$
\begin{aligned}
& \frac{\sin 96^{\circ}}{2}=\frac{\sin 48^{\circ}}{x} \\
& x=\frac{2 \sin 48^{\circ}}{\sin 96^{\circ}} \approx 1.49447 \mathrm{mi} \\
& \sin 36^{\circ}=\frac{h}{149447} \\
& h=6.494477 \sin 86^{\circ} \\
& =0.878 \mathrm{mb}
\end{aligned}
$$


(b) If Siegfried is driving 60 mph and Roy is driving 50 mph , who will be the first to arrive at the spot directly under the UFO?

$$
y=\text { Siegfried dist }
$$

$$
\begin{aligned}
\text { Roy's Distance } & =2-1.209 \\
& \approx 0.791 \mathrm{mi}
\end{aligned}
$$

$$
\begin{aligned}
& \cos 36^{\circ}=\frac{y}{1.49447} \rightarrow y \approx 1.209 \text { miles } \\
& \text { Times }=\frac{1.209}{60} \approx 0.020 .5 \mathrm{hrs}
\end{aligned}
$$

$$
\text { Time }_{R}=\frac{0.791}{50} \approx 0.01582
$$


4. Sandra is designing a new bike; she wants to use tires that are 28 inches in diameter, and she has already committed to have the pedal sprocket be 8 inches in diameter. What would the diameter of the rear wheel sprocket need to be if she wanted to have a pedal speed of 40 rpms produce a forward speed of 10 miles per hour?


$$
\begin{aligned}
& \frac{40 \text { vars }}{1 \text { min }} \text { (pedal sprocket speed) } \\
& \frac{40 \text { revs }}{1 \min } \cdot \frac{8 \pi}{1 \operatorname{rev}^{2}}=320 \pi \frac{\mathrm{in}}{\text { min }} \quad \text { (chain speed) } \\
& \frac{320 \pi \text { in }}{m i n} \cdot \frac{1 \text { rev }}{x \pi i n}=\frac{320}{x} \frac{\text { revs }}{m a n} \quad\left(\begin{array}{c}
\text { rear wheel/ } \\
\text { rear wheel sprocket } \\
\text { speed }
\end{array}\right) \\
& \frac{320}{x} \frac{\mathrm{revs}}{\mathrm{~min}}, \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{28 \pi \mathrm{in} \frac{1 \mathrm{ft}}{1 \mathrm{rev}} \frac{1 \mathrm{mi}}{12 \mathrm{in}} \frac{5280 \mathrm{ft}}{}=\frac{10 \mathrm{~m}_{\mathrm{c}}}{1 \mathrm{hr}_{r}}}{1}
\end{aligned}
$$

